
International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 770
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 Pure SV Verification Environment Methodology
for ASIC Verification

Dhara Gohel
Dept. VLSI & EMBEDDED SYSTEM
Ganpat University, Mehsana, India

Email: dharag91@gmail.com

Abstract— Nowadays there is ever-increasing density, development cost and turn-around time of VLSI chips. So it becomes
increasingly important to have a design verification methodology which enables first-pass chips to be fully functional. The development
time and effort can be reduced significantly by reusing design blocks from one project to the next. Verification consumes much more
resources than design does in a typical design project, it would be of great value to build verification components that are modular and
reusable. In this paper a verification environment is presented for ASIC verification which uses System Verilog (SV) as a Hardware
Verification language (HVL) for its implementation.

Keywords—ASIC, Environment, HDL, HVL, SV, Verification, VLSI.

I. INTRODUCTION
As ASIC designs become more complex, it follows that the

complexity of the verification environments for such designs
increases dramatically as well. “Reuse” is a term that is
frequently associated with verification productivity. When
faced with writing a verification environment from scratch, or
modifying an existing one, the choice will often be to stick
with what’s familiar and already in existence. “Methodology”
lays a foundation for a robust verification environment which
is capable of handling complex verification needs and speed
up the verification process. The basic strategy for development
of verification model is discussed in this paper which exploits
the best attributes of the traditional method of design
verification.

There is a growing demand for guidelines and best
practices to ensure successful ASIC verification. It is true that
the verification problems did not change but the way the
problems are approached and the structuring of the solutions,
i.e. verification environments, depends much on the
methodology. There are two key categories for ASIC
verification guidelines: process, enabled by tools, and
methodology. The process guidelines are about what we need
to do and in what order, while the methodology guidelines are
about how to do it.

When a verification environment is needed for a new
design, or for a design revision with significant changes, it is
important to objectively look at the shortcomings of the
existing verification environment and expected productivity
gain with the new methodology and determine the best
solution. We need to find an optimum balance between re-
usability of our legacy Verilog environment and the resource
utilization along with limited timelines in adopting the new
methodology. This can be accomplished by reusing the
knowledge /legacy code from an earlier project along with an
upgrade to a new methodology provided with the verification
language, that is System Verilog.

Today in the era of multi-million gate ASICs, reusable
Intellectual Property (IP), and System-on-a –Chip (SoC)
designs, verification consumes anywhere between 50% and
75% [1] of the design resources (time and effort). The number
of verification engineers is usually twice the number of RTL

designers in any non-trivial project. When design projects are
completed, the code base that implements the test benches and
test cases frequently makes up about 80% of the total code
volume [1-2]. This is the main reason design verification is
currently the target of new tools and methodologies intended
to accelerate the verification effort. These tools and techniques
attempt to reduce the overall verification time by enabling
parallelization of effort, higher levels of abstraction and
automation. The current design trend is to reuse previously
verified IP blocks in newer, bigger designs. In the same
fashion, it makes sense to build verification components that
can be reused in multiple chip design projects. However, the
idea of reusable verification blocks is more recent than
reusable design blocks [3-4].

II. ASIC VERIFICATION

A. Importance of Verification
Verification is not a testbench, nor is it a series of

testbenches. Verification is a process used to demonstrate that
the intent of a design is preserved in its implementation.

Verification effort has a very high development cost, it
consumes most of the design resources, making verification the
real limiting factor of time-to-market. Companies are forced to
send the designs for fabrication because of the time to market
constraints even though they are not close to the completion
stage of verification of all the functional characteristics of the
design. The overall verification time can be reduced by
enabling parallelism of effort, higher abstraction levels and
automation.

Verification time can be reduced through parallelism. If
efforts can be parallelized, additional resources can be applied
effectively to reduce the total verification time. To parallelize
the verification effort, it is necessary to be able to write—and
debug—testbenches in parallel with each other as well as in
parallel with the implementation of the design.

Providing higher abstraction levels enables you to work
more efficiently without worrying about low-level details.
Higher abstraction levels are usually accompanied by a
reduction in control and therefore must be chosen wisely. As

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 771
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

the design abstraction gets higher, the verification challenge is
higher.

Automation lets you do something else while a machine
completes a task autonomously, faster and with predictable
results. Automation requires standard processes with well-
defined inputs and outputs. For specific domains, automation
can be emulated using randomization. By constraining a
random generator to produce valid inputs within the bounds of
a particular domain, it is possible to automatically produce
almost all of the interesting conditions. The automation process
takes more computation time to achieve the same result, but it
is completely autonomous, freeing valuable resources to work
on other critical tasks.

The process of verification parallels the design creation
process. A designer reads the hardware specification for a
block, interprets the human language description, and creates
the corresponding logic in a machine-readable form, usually
RTL code. To do this, efforts should be made to understand the
input format, the transformation function, and the format of the
output. There is always ambiguity in this interpretation,
perhaps because of ambiguities in the original document,
missing details, or conflicting descriptions. For verifying the
DUT in a proper way, it is needed to know the hardware
specification, create the verification plan, and then follow it to
build tests showing the RTL code correctly implements the
features[1-5].

To simulate a single design block, first of all tests are
created that generates stimuli from all the surrounding blocks
– a difficult chore. The benefit is that these low-level
simulations run very fast. However, you may find bugs in both
the design and testbench, as the latter will have a great deal of
code to provide stimuli from the missing blocks. As you start
to integrate design blocks, they can stimulate each other,
reducing your workload. These multiple block simulations
may uncover more bugs, but they also run slower.

At the highest level of the DUT, the entire system is tested,
but the simulation performance is greatly reduced. Your tests
should strive to have all blocks performing interesting activities
concurrently. All I/O ports are active, processors are crunching
data, and caches are being refilled. With all this action, data
alignment and timing bugs are sure to occur. At this level you
should be able to run sophisticated tests that have the DUT
executing multiple operations concurrently so that as many
blocks as possible are active.

Once you have verified that the DUT performs its
designated functions correctly, you need to see how it operates
when there are errors. It is mandatory to see that the design
can handle a partial transaction, or one with corrupted data or
control fields. If the design faces some problems then there
should be a solution to recover from those problems. Error
injection and handling is the most challenging part of
verification.

B. Hardware Verification Language
System Verilog (SV) is the first choice to be used since it

is an IEEE standard as well as easy to learn, for those who are
already familiar with Verilog. It provides some additional
constructs for the randomization implementation and Object
Oriented techniques for improving the Verification
environment. Some of the typical features of an HVL that
distinguish it from a Hardware Description Language such as
Verilog or VHDL are [5]:

• Constrained-random stimulus generation

• Functional coverage

• Higher-level structures, especially object-oriented
programming

• Multithreading and interprocess communication

• Support for HDL types such as Verilog’s 4-state
values

• Tight integration with event-simulator for control of
the design

There are many other useful features, but these allow you
to create testbenches at a higher level of abstraction than you
are able to achieve with an HDL or a programming language
such as C.

C. Verification Approach
This traditional approach of verifying the designs by

writing the Verilog/VHDL testbench leads the designers to
completely rely on developing a directed environment and
hand-written directed test cases. These directed tests provide
explicit stimulus to the design inputs, run the design in
simulation, and check the behavior of the design against
expected results. This approach may provide adequate results
for small, simple designs but it is still a manual and somewhat
error-prone method. In addition, directed tests are not able to
catch obscure defects due to features that nobody thought of.
Moreover these traditional methods have very limited and
cumbersome random capability.

The solution is to create test cases automatically using
constrained-random tests (CRT). A directed test finds the bugs
you think are there, but a CRT finds bugs you never thought
about, by using random stimulus. You restrict the test
scenarios to those that are both valid and of interest by using
constraints.

Creating a CRT environment takes more work than
creating one for directed tests. A simple directed test just
applies stimulus, and then you manually check the result.
These results are captured as a golden log file and compared
with future simulations to see whether the test passes or fails.
A CRT environment needs not only to create the stimulus but
also to predict the result, using a reference model, transfer
function, or other techniques.

Once this environment is in place, hundreds of tests can
run without having to hand-check the results, thereby
improving your productivity. Randomization also reduces the
verification time by generating the stimuli and covering all test
cases.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 772
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 1. Random v/s Directed Approach[10]

With increase in complexity and size of design, there is
higher and higher demand on exhaustive functional
verification. These demands are necessitating the development
of new verification technologies, such as, constrained random
verification, score-boarding and functional coverage, to
achieve exhaustive functional verification goal.

These development methods for reusable verification
environment are much easier and helpful in constraining
verification to find out the corner cases and hidden bugs which
are left undetected with conventional directed approach.

D. Testing vs Verification
Testing is often confused with verification. The purpose of

the former is to verify that the design was manufactured
correctly. The purpose of the latter is to ensure that a design
meets its functional intent. Verification makes the difference
between a product that is seen as easy to use and one that
repeatedly locks up.

Fig. 2. Testing v/s Verification[1]

Basically testing is after silicon and verification is before
silicon. Verification ensures that the design is as per the
specifications and there are no bugs or flaws in the design.

III. PURE SV VERIFICATION ENVIRONMENT
Verification is that are we building the product right or not.

Through verification, we make sure the product behaves the
way we want it to. The verification environment is architected
based on layered testbench approach and designed to be
reusable at gate level simulations and block level environments.
Pure SV (System verilog) refers to the verification environment
developed through SV as an HVL and the base architecture
used is layered testbench architecture with some modifications.

For the purpose of Verification we will be using Pure SV
environment which is having Generator, Driver, Monitor,
Checker and Scoreboard as the components of the Testbench.
All these classes are modeled inside Environment class. The
test is at the top of the hierarchy, as it is the program that
instantiates the Environment Class. Assertions are there which
keeps us inform that the design doesn’t violate from the
protocol.

Fig. 3. Pure SV Verification Environment

Test: The top layer is the test layer which is shown by the
box Test which generates constrained random stimulus needed
for the test. The test is written as a program block which
provides an entry point into the testbench environment.

Generator: It creates input at a high level of abstraction
namely; as transactions like read write operation that is it
provides different scenarios the DUT is capable of handling. It
is therefore called the scenario layer.

Driver: Driver layer also called the command layer breaks
the single commands into signal changes required to drive the
DUT. Driver converts its input into actual design inputs, as
defined in the specification of the designs interface.

Monitor: The DUT’s outputs drives the monitor which
takes signal transitions and groups them into commands
required for the checker. Monitor reports the protocol violation
and identifies all the transactions. It converts the pin level
activities in to high level. The monitor only monitors the
interface protocol. It doesn't check whether the data is same as
expected data or not, as interface has nothing to do with the
data. It is therefore called functional layer.

Checker: Checker passes the output of the monitor to the
scoreboard. It converts the low level data to high-level data and
validated the data. The comparison state is sent to scoreboard.

Scoreboard: The Scoreboard receives the commands from
the Driver and predicts the results of the transaction. These are
compared with the checker input to the scoreboard to see if the
results match. Scoreboard also keeps track of how many
transactions were initiated, how many finished and how many
are pending and whether a given transaction passed or failed.

Assertions: They cross the Command/signal layer (Driver,
DUT) as they look at changes of the individual signal across
the entire command and flag an error if the signal does not
behave correctly. If Critical signal is ―asserted at the wrong
cycle, the assertion is triggered. Assertions capture design
intent and can be incorporated with the design. Assertions
detect errors closer to their source, speeding removal.

Interface: It encapsulates the communication between the
testbench and DUT which may include:

• Connectivity using named bundle of wires

Scoreboard

Test

Environment
Generator

Input

Driver

Assertions

DUT

Checker

Monitor

Golden
Reference

Output
(Matlab)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 773
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

• One or more bundles to connect

• Can be reduced for different tests(like all interfaces
may not be needed for a particular test case

• Directional Information (using modport)

• Timing (clocking blocks)

• Functionality (routines, assertions, initial /always
blocks)

Mathworks Matlab is used to generate the golden reference

output for the DUT (Design under Test) to be verified. Input is
randomized as per the constraints of the specifications which
would cover all the test cases.

Scoreboard compares the output of the DUT with the
golden reference output (Matlab) and sees that the data matches
or not. So, the golden reference should also be perfect for this
purpose. For some ASICs, this golden reference may be
provided by the client itself.

If there’s mismatch in the data compared, first thing is to
see if there are any timing violations. If there is Timing
violations it needs to be solved. Secondly, for which test cases
output is not matching. This confirms that there are RTL design
bugs in DUT which needs to be solved by RTL developer.
Bugs report will be made and given to the designer to fix the
bugs. After bug fixing again the test cases will be passes
through the design. This process will iterate till there are no
bugs and the design seems to be fully functional according to
the specifications.

Lastly, if the design has passed all the corner cases
successfully then the design is verified by applying the negative
cases to the design. Also, coverage is kept in mind and attempts
are made to achieve 100 percent functional coverage. If there
are some areas where the design doesn’t enter then some
directed cases can be written and the design functionality can
be checked. This may result in achieving good code coverage.

This is the way to verify a DUT through the pure SV
verification approach, which is faster than the traditional way
for verification and productivity becomes higher.

IV. IMPLEMENTATION
Pure SV verification environment is implemented on a

Differential Encoder - Decoder design. Differential encoding/
decoding is used to resolve an initial phase ambiguity for PSK
schemes.

All the reusable modules are coded using the system verilog
language. Tool used is Synopsys VCS – Verilog Code
Simulator. VCS is a high-performance, high-capacity Verilog
simulator that incorporates advanced, high level abstraction
verification technologies into a single open native platform [8].
There are three main steps that is analyze compile and simulate.

Scripting is done as per the pure sv environment and the
verification is carried out on the VCS tool by synopsys.
Assertions are checked and it is verified that the design is
properly verified or not. All the three steps are done on VCS.
The modules scripted are by keeping in mind the environment
and the methodology to be implemented for verifying the
design. Modules are reusable and can be used for design to
design by making minor modifications.

All modules are scripted as mentioned in Section III of this
paper. Modules incorporates the randomization and assertions
in their development.

Fig. 4. Coding of reusable modules in SV

A. Analyze
The DUT is in the VHDL format, so I have to integrate

VHDL with System Verilog. For integrating and analyzing it
the process is as below:

1. Make the directory name work

mkdir work
2. Create the synopsys_sim.setup file and map the

logical and physical libraries to default work
directory.

3. Next analyse all the vhdl files

 vhdlan name of vhdl files

4. Analyze the system verilog files that is the
environment created

vlogan –sverilog name of the top module of sv

Here, the switch used is –sverilog for compiling the system
verilog modules.

If the DUT is in verilog the first three steps are not required
as verilog is the default option in the simulator.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 774
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 5. Analyzing modules of VHDL and SV in VCS

After all the modules are analyzed and passed successfully
the next step is to compile the design.

B. Compile
Now the compilation process is to be done which is by a

simple command.

Compile the main module using vcs command

vcs module name

Fig. 6. Compiling top module of SV in VCS

After all the modules are compiled successfully without
any errors the next step is to simulate the design. It will
indicate that simv up to date. This simv is the executable file
generated after the compilation.

C. Simulate
The simv file which is auto generated is the executable file.

This file is executed to simulate the design.

Then run the simv file and to open gui use the switch

 ./simv –gui

Fig. 7. Simulating top module of SV in VCS

After gui is invoked add the signals you want to monitor
and verify through assertions. Assertions will fail if the design
is violating the rule.

Fig. 8. Assertions view in VCS

 If some of the assertions fail then you need to go back and
iterate the process again and solve the flaws in the design. After
solving the bugs again the same thing is verified. But the
challenge here is that you define the assertion in a perfect way.

V. CONCLUSION
The implemented pure SV verification environment has

many pros. It speeds up verification and results in early tape
out of the chip. Less man power is required, by which the
overall cost of the project will be low. Environment can be
reusable with minimal modifications this results in achieving
time to market goal. Also, easy tracking of verification
progress can be done and bugs can be found out and resolved
quickly.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 775
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

ACKNOWLEDGMENT AS

The author wishes to express her gratitude to her supervisor
Mr. Pinakin Thaker from SAC-ISRO who was helpful and
offered invaluable support, guidance and facilities. The author
would also like to convey thanks to her internal guide Assoc.
Prof. Himanshu Patel, Ganpat University, who rendered his
help and assistance. The author wishes to express her love and
gratitude to her beloved families; for their endless love and
understanding, through the duration of her studies.

REFERENCES

[1] J. Bergeron, Writing Testbenches: Functional Verification of

HDL Models, Kluwer Academic Publishers, 2000.

[2] H. Foster et al., Principles of Verifiable RTL Design: A
Functional Coding Style Supporting Verification Processes in
Verilog, Kluwer Academic Publishers, 2001.

[3] Petlin, O., et al., “Methodology and Code Reuse in the
Verification of Telecommunications SOCs,” Proceedings of the
13th Annual IEEE International ASIC/SOC Conference,
Washington, D.C., USA, September 2000.

[4] Y. Lu, “Design Verification Concepts,” Proceedings of the 4th
International Conference on ASICs,” Shanghai, China, October
2001.

[5] Chris Spear, “System Verilog for Verification”, Springer
publication, 2008.

[6] “IEEE Standard for System Verilog – Unified Hardware Design,
Specification, and Verification Language”, IEEE Computer
Society.

[7] “System Verilog 3.1a Language Reference Manual”, Accellera’s
Extensions to Verilog.

[8] Link: http://users.ece.utexas.edu/handouts/vcs.pdf

[9] A. Sagahyroon, G. Lakkaraju and M. Karunaratne, “A Functional
Verification Environment”, IEEE Conference Publications
Circuits and Systems, 48th Midwest Symposium on 7-10 Aug.
2005.

[10] Link: http://www.design-reuse.com

IJSER

http://www.ijser.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10622

	I. INTRODUCTION
	II. ASIC VERIFICATION
	A. Importance of Verification
	B. Hardware Verification Language
	C. Verification Approach
	D. Testing vs Verification

	III. PURE SV VERIFICATION ENVIRONMENT
	IV. IMPLEMENTATION
	A. Analyze
	B. Compile
	C. Simulate

	V. CONCLUSION
	Acknowledgment as
	References

