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Abstract— Nowadays there is ever-increasing density, development cost and turn-around time of VLSI chips. So it becomes 
increasingly important to have a design verification methodology which enables first-pass chips to be fully functional. The development 
time and effort can be reduced significantly by reusing design blocks from one project to the next. Verification consumes much more 
resources than design does in a typical design project, it would be of great value to build verification components that are modular and 
reusable. In this paper a verification environment is presented for ASIC verification which uses System Verilog (SV) as a Hardware 
Verification language (HVL) for its implementation. 
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I. INTRODUCTION 
As ASIC designs become more complex, it follows that the 

complexity of the verification environments for such designs 
increases dramatically as well. “Reuse” is a term that is 
frequently associated with verification productivity. When 
faced with writing a verification environment from scratch, or 
modifying an existing one, the choice will often be to stick 
with what’s familiar and already in existence. “Methodology” 
lays a foundation for a robust verification environment which 
is capable of handling complex verification needs and speed 
up the verification process. The basic strategy for development 
of verification model is discussed in this paper which exploits 
the best attributes of the traditional method of design 
verification. 

There is a growing demand for guidelines and best 
practices to ensure successful ASIC verification. It is true that 
the verification problems did not change but the way the 
problems are approached and the structuring of the solutions, 
i.e. verification environments, depends much on the 
methodology. There are two key categories for ASIC 
verification guidelines: process, enabled by tools, and 
methodology. The process guidelines are about what we need 
to do and in what order, while the methodology guidelines are 
about how to do it.  

When a verification environment is needed for a new 
design, or for a design revision with significant changes, it is 
important to objectively look at the shortcomings of the 
existing verification environment and expected productivity 
gain with the new methodology and determine the best 
solution. We need to find an optimum balance between re-
usability of our legacy Verilog environment and the resource 
utilization along with limited timelines in adopting the new 
methodology. This can be accomplished by reusing the 
knowledge /legacy code from an earlier project along with an 
upgrade to a new methodology provided with the verification 
language, that is System Verilog.  

Today in the era of multi-million gate ASICs, reusable 
Intellectual Property (IP), and System-on-a –Chip (SoC) 
designs, verification consumes anywhere between 50% and 
75% [1] of the design resources (time and effort). The number 
of verification engineers is usually twice the number of RTL 

designers in any non-trivial project. When design projects are 
completed, the code base that implements the test benches and 
test cases frequently makes up about 80% of the total code 
volume [1-2]. This is the main reason design verification is 
currently the target of new tools and methodologies intended 
to accelerate the verification effort. These tools and techniques 
attempt to reduce the overall verification time by enabling 
parallelization of effort, higher levels of abstraction and 
automation. The current design trend is to reuse previously 
verified IP blocks in newer, bigger designs. In the same 
fashion, it makes sense to build verification components that 
can be reused in multiple chip design projects. However, the 
idea of reusable verification blocks is more recent than 
reusable design blocks [3-4]. 
 

II. ASIC VERIFICATION 

A.  Importance of Verification  
Verification is not a testbench, nor is it a series of 

testbenches. Verification is a process used to demonstrate that 
the intent of a design is preserved in its implementation.  

Verification effort has a very high development cost, it 
consumes most of the design resources, making verification the 
real limiting factor of time-to-market. Companies are forced to 
send the designs for fabrication because of the time to market 
constraints even though they are not close to the completion 
stage of verification of all the functional characteristics of the 
design. The overall verification time can be reduced by 
enabling parallelism of effort, higher abstraction levels and 
automation. 

Verification time can be reduced through parallelism. If 
efforts can be parallelized, additional resources can be applied 
effectively to reduce the total verification time. To parallelize 
the verification effort, it is necessary to be able to write—and 
debug—testbenches in parallel with each other as well as in 
parallel with the implementation of the design. 

Providing higher abstraction levels enables you to work 
more efficiently without worrying about low-level details. 
Higher abstraction levels are usually accompanied by a 
reduction in control and therefore must be chosen wisely. As 
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the design abstraction gets higher, the verification challenge is 
higher. 

Automation lets you do something else while a machine 
completes a task autonomously, faster and with predictable 
results. Automation requires standard processes with well-
defined inputs and outputs. For specific domains, automation 
can be emulated using randomization. By constraining a 
random generator to produce valid inputs within the bounds of 
a particular domain, it is possible to automatically produce 
almost all of the interesting conditions. The automation process 
takes more computation time to achieve the same result, but it 
is completely autonomous, freeing valuable resources to work 
on other critical tasks. 

The process of verification parallels the design creation 
process. A designer reads the hardware specification for a 
block, interprets the human language description, and creates 
the corresponding logic in a machine-readable form, usually 
RTL code. To do this, efforts should be made to understand the 
input format, the transformation function, and the format of the 
output. There is always ambiguity in this interpretation, 
perhaps because of ambiguities in the original document, 
missing details, or conflicting descriptions. For verifying the 
DUT in a proper way, it is needed to know the hardware 
specification, create the verification plan, and then follow it to 
build tests showing the RTL code correctly implements the 
features[1-5].  

To simulate a single design block, first of all tests are 
created that generates stimuli from all the surrounding blocks 
– a difficult chore. The benefit is that these low-level 
simulations run very fast. However, you may find bugs in both 
the design and testbench, as the latter will have a great deal of 
code to provide stimuli from the missing blocks. As you start 
to integrate design blocks, they can stimulate each other, 
reducing your workload. These multiple block simulations 
may uncover more bugs, but they also run slower.  

At the highest level of the DUT, the entire system is tested, 
but the simulation performance is greatly reduced. Your tests 
should strive to have all blocks performing interesting activities 
concurrently. All I/O ports are active, processors are crunching 
data, and caches are being refilled. With all this action, data 
alignment and timing bugs are sure to occur. At this level you 
should be able to run sophisticated tests that have the DUT 
executing multiple operations concurrently so that as many 
blocks as possible are active.  

Once you have verified that the DUT performs its 
designated functions correctly, you need to see how it operates 
when there are errors. It is mandatory to see that the design 
can handle a partial transaction, or one with corrupted data or 
control fields. If the design faces some problems then there 
should be a solution to recover from those problems. Error 
injection and handling is the most challenging part of 
verification.  

B. Hardware Verification Language  
System Verilog (SV) is the first choice to be used since it 

is an IEEE standard as well as easy to learn, for those who are 
already familiar with Verilog. It provides some additional 
constructs for the randomization implementation and Object 
Oriented techniques for improving the Verification 
environment. Some of the typical features of an HVL that 
distinguish it from a Hardware Description Language such as 
Verilog or VHDL are [5]:  

• Constrained-random stimulus generation  

• Functional coverage  

• Higher-level structures, especially object-oriented 
programming  

• Multithreading and interprocess communication  

• Support for HDL types such as Verilog’s 4-state 
values  

• Tight integration with event-simulator for control of 
the design  

There are many other useful features, but these allow you 
to create testbenches at a higher level of abstraction than you 
are able to achieve with an HDL or a programming language 
such as C. 

C. Verification Approach 
This traditional approach of verifying the designs by 

writing the Verilog/VHDL testbench leads the designers to 
completely rely on developing a directed environment and 
hand-written directed test cases. These directed tests provide 
explicit stimulus to the design inputs, run the design in 
simulation, and check the behavior of the design against 
expected results. This approach may provide adequate results 
for small, simple designs but it is still a manual and somewhat 
error-prone method. In addition, directed tests are not able to 
catch obscure defects due to features that nobody thought of. 
Moreover these traditional methods have very limited and 
cumbersome random capability. 

The solution is to create test cases automatically using 
constrained-random tests (CRT). A directed test finds the bugs 
you think are there, but a CRT finds bugs you never thought 
about, by using random stimulus. You restrict the test 
scenarios to those that are both valid and of interest by using 
constraints. 

Creating a CRT environment takes more work than 
creating one for directed tests. A simple directed test just 
applies stimulus, and then you manually check the result. 
These results are captured as a golden log file and compared 
with future simulations to see whether the test passes or fails. 
A CRT environment needs not only to create the stimulus but 
also to predict the result, using a reference model, transfer 
function, or other techniques.  

Once this environment is in place, hundreds of tests can 
run without having to hand-check the results, thereby 
improving your productivity. Randomization also reduces the 
verification time by generating the stimuli and covering all test 
cases. 
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Fig. 1. Random v/s Directed Approach[10]  

With increase in complexity and size of design, there is 
higher and higher demand on exhaustive functional 
verification. These demands are necessitating the development 
of new verification technologies, such as, constrained random 
verification, score-boarding and functional coverage, to 
achieve exhaustive functional verification goal. 

These development methods for reusable verification 
environment are much easier and helpful in constraining 
verification to find out the corner cases and hidden bugs which 
are left undetected with conventional directed approach. 

D. Testing vs Verification 
Testing is often confused with verification. The purpose of 

the former is to verify that the design was manufactured 
correctly. The purpose of the latter is to ensure that a design 
meets its functional intent. Verification makes the difference 
between a product that is seen as easy to use and one that 
repeatedly locks up. 

 
 
 
 
 
 
 
 
 
Fig. 2. Testing v/s Verification[1]  

Basically testing is after silicon and verification is before 
silicon. Verification ensures that the design is as per the 
specifications and there are no bugs or flaws in the design. 

III. PURE SV VERIFICATION ENVIRONMENT 
Verification is that are we building the product right or not. 

Through verification, we make sure the product behaves the 
way we want it to. The verification environment is architected 
based on layered testbench approach and designed to be 
reusable at gate level simulations and block level environments. 
Pure SV (System verilog) refers to the verification environment 
developed through SV as an HVL and the base architecture 
used is layered testbench architecture with some modifications. 

For the purpose of Verification we will be using Pure SV 
environment which is having Generator, Driver, Monitor, 
Checker and Scoreboard as the components of the Testbench. 
All these classes are modeled inside Environment class. The 
test is at the top of the hierarchy, as it is the program that 
instantiates the Environment Class. Assertions are there which 
keeps us inform that the design doesn’t violate from the 
protocol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Pure SV Verification Environment 

Test: The top layer is the test layer which is shown by the 
box Test which generates constrained random stimulus needed 
for the test. The test is written as a program block which 
provides an entry point into the testbench environment.  

Generator: It creates input at a high level of abstraction 
namely; as transactions like read write operation that is it 
provides different scenarios the DUT is capable of handling. It 
is therefore called the scenario layer. 

Driver: Driver layer also called the command layer breaks 
the single commands into signal changes required to drive the 
DUT. Driver converts its input into actual design inputs, as 
defined in the specification of the designs interface.  

Monitor: The DUT’s outputs drives the monitor which 
takes signal transitions and groups them into commands 
required for the checker. Monitor reports the protocol violation 
and identifies all the transactions. It converts the pin level 
activities in to high level. The monitor only monitors the 
interface protocol. It doesn't check whether the data is same as 
expected data or not, as interface has nothing to do with the 
data. It is therefore called functional layer. 

Checker: Checker passes the output of the monitor to the 
scoreboard. It converts the low level data to high-level data and 
validated the data. The comparison state is sent to scoreboard.  

Scoreboard: The Scoreboard receives the commands from 
the Driver and predicts the results of the transaction. These are 
compared with the checker input to the scoreboard to see if the 
results match. Scoreboard also keeps track of how many 
transactions were initiated, how many finished and how many 
are pending and whether a given transaction passed or failed. 

Assertions: They cross the Command/signal layer (Driver, 
DUT) as they look at changes of the individual signal across 
the entire command and flag an error if the signal does not 
behave correctly. If Critical signal is ―asserted at the wrong 
cycle, the assertion is triggered. Assertions capture design 
intent and can be incorporated with the design. Assertions 
detect errors closer to their source, speeding removal. 

Interface: It encapsulates the communication between the 
testbench and DUT which may include: 

• Connectivity using named bundle of wires  
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• One or more bundles to connect  

• Can be reduced for different tests(like all interfaces 
may not be needed for a particular test case  

• Directional Information (using modport)  

• Timing (clocking blocks)  

• Functionality (routines, assertions, initial /always 
blocks) 

  
Mathworks Matlab is used to generate the golden reference 

output for the DUT (Design under Test) to be verified. Input is 
randomized as per the constraints of the specifications which 
would cover all the test cases.  

Scoreboard compares the output of the DUT with the 
golden reference output (Matlab) and sees that the data matches 
or not. So, the golden reference should also be perfect for this 
purpose. For some ASICs, this golden reference may be 
provided by the client itself. 

If there’s mismatch in the data compared, first thing is to 
see if there are any timing violations. If there is Timing 
violations it needs to be solved. Secondly, for which test cases 
output is not matching. This confirms that there are RTL design 
bugs in DUT which needs to be solved by RTL developer. 
Bugs report will be made and given to the designer to fix the 
bugs. After bug fixing again the test cases will be passes 
through the design. This process will iterate till there are no 
bugs and the design seems to be fully functional according to 
the specifications. 

Lastly, if the design has passed all the corner cases 
successfully then the design is verified by applying the negative 
cases to the design. Also, coverage is kept in mind and attempts 
are made to achieve 100 percent functional coverage. If there 
are some areas where the design doesn’t enter then some 
directed cases can be written and the design functionality can 
be checked. This may result in achieving good code coverage. 

This is the way to verify a DUT through the pure SV 
verification approach, which is faster than the traditional way 
for verification and productivity becomes higher.  

IV. IMPLEMENTATION 
Pure SV verification environment is implemented on a 

Differential Encoder - Decoder design. Differential encoding/ 
decoding is used to resolve an initial phase ambiguity for PSK 
schemes.  

All the reusable modules are coded using the system verilog 
language. Tool used is Synopsys VCS – Verilog Code 
Simulator. VCS is a high-performance, high-capacity Verilog 
simulator that incorporates advanced, high level abstraction 
verification technologies into a single open native platform [8]. 
There are three main steps that is analyze compile and simulate. 

Scripting is done as per the pure sv environment and the 
verification is carried out on the VCS tool by synopsys. 
Assertions are checked and it is verified that the design is 
properly verified or not. All the three steps are done on VCS. 
The modules scripted are by keeping in mind the environment 
and the methodology to be implemented for verifying the 
design. Modules are reusable and can be used for design to 
design by making minor modifications.  

All modules are scripted as mentioned in Section III of this 
paper. Modules incorporates the randomization and assertions 
in their development. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Coding of reusable modules in SV 

A. Analyze 
The DUT is in the VHDL format, so I have to integrate 

VHDL with System Verilog. For integrating and analyzing it 
the process is as below: 

1. Make the directory name work  

mkdir work 
2. Create the synopsys_sim.setup file and map the 

logical and physical libraries to default work 
directory. 

3. Next analyse all the vhdl files 

 vhdlan name of vhdl files 

4. Analyze the system verilog files that is the 
environment created  

vlogan –sverilog name of the top module of sv  

Here, the switch used is –sverilog for compiling the system 
verilog modules.  

If the DUT is in verilog the first three steps are not required 
as verilog is the default option in the simulator. 
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Fig. 5. Analyzing modules of VHDL and SV in VCS 

After all the modules are analyzed and passed successfully 
the next step is to compile the design. 

B. Compile 
Now the compilation process is to be done which is by a 

simple command. 

Compile the main module using vcs command  

vcs module name  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Compiling top module of SV in VCS 

After all the modules are compiled successfully without 
any errors the next step is to simulate the design. It will 
indicate that simv up to date. This simv is the executable file 
generated after the compilation. 

 

C. Simulate 
The simv file which is auto generated is the executable file. 

This file is executed to simulate the design. 

Then run the simv file and to open gui use the switch  

       ./simv –gui 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Simulating top module of SV in VCS 

After gui is invoked add the signals you want to monitor 
and verify through assertions. Assertions will fail if the design 
is violating the rule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Assertions view in VCS 

 If some of the assertions fail then you need to go back and 
iterate the process again and solve the flaws in the design. After 
solving the bugs again the same thing is verified. But the 
challenge here is that you define the assertion in a perfect way. 

 

V. CONCLUSION 
The implemented pure SV verification environment has 

many pros. It speeds up verification and results in early tape 
out of the chip. Less man power is required, by which the 
overall cost of the project will be low. Environment can be 
reusable with minimal modifications this results in achieving 
time to market goal. Also, easy tracking of verification 
progress can be done and bugs can be found out and resolved 
quickly.  

 

 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014                                                                                                      775 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org 

ACKNOWLEDGMENT AS 

The author wishes to express her gratitude to her supervisor 
Mr. Pinakin Thaker from SAC-ISRO who was helpful and 
offered invaluable support, guidance and facilities. The author 
would also like to convey thanks to her internal guide Assoc. 
Prof. Himanshu Patel, Ganpat University, who rendered his 
help and assistance. The author wishes to express her love and 
gratitude to her beloved families; for their endless love and 
understanding, through the duration of her studies. 

REFERENCES 
 
[1] J. Bergeron, Writing Testbenches: Functional Verification of 

HDL Models, Kluwer Academic Publishers, 2000. 

[2] H. Foster et al., Principles of Verifiable RTL Design: A 
Functional Coding Style Supporting Verification Processes in 
Verilog, Kluwer Academic Publishers, 2001. 

[3] Petlin, O., et al., “Methodology and Code Reuse in the 
Verification of Telecommunications SOCs,” Proceedings of the 
13th Annual IEEE International ASIC/SOC Conference, 
Washington, D.C., USA, September 2000. 

[4] Y. Lu, “Design Verification Concepts,” Proceedings of the 4th 
International Conference on ASICs,” Shanghai, China, October 
2001. 

[5] Chris Spear, “System Verilog for Verification”, Springer 
publication, 2008. 

[6] “IEEE Standard for System Verilog – Unified Hardware Design, 
Specification, and Verification Language”, IEEE Computer 
Society. 

[7] “System Verilog 3.1a Language Reference Manual”, Accellera’s 
Extensions to Verilog. 

[8] Link: http://users.ece.utexas.edu/handouts/vcs.pdf  

[9] A. Sagahyroon, G. Lakkaraju and M. Karunaratne, “A Functional 
Verification Environment”, IEEE Conference Publications 
Circuits and Systems, 48th Midwest Symposium on 7-10 Aug. 
2005. 

[10] Link: http://www.design-reuse.com 

 
 
 
 
 
 

 
 
 
 
 

 

IJSER

http://www.ijser.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10622

	I. INTRODUCTION
	II. ASIC VERIFICATION
	A.  Importance of Verification 
	B. Hardware Verification Language 
	C. Verification Approach
	D. Testing vs Verification

	III. PURE SV VERIFICATION ENVIRONMENT
	IV. IMPLEMENTATION
	A. Analyze
	B. Compile
	C. Simulate

	V. CONCLUSION
	Acknowledgment as
	References




